AI会让人类大量失业吗?

人类的工作被机器取代,这件事的隐含风险是不言自明的,那就是可怕的失业!

人类文明史漫漫数千年,因为科技进步而造成的社会格局、经济结构的调整、变革、阵痛乃至暂时的倒退都屡见不鲜。从局部视角来看,很多划时代的科技成果必然引发人们生活方式的改变,短期内很可能难以被接受,但站在足够的高度上,放眼足够长的历史变迁,所有重大的科技革命无一例外地都最终成为人类发展的加速器,同时也是人类生活品质提高的根本保障。从全局视角看,历史上还没有哪一次科技革命成为人类的灾难而不是福音。

科技革命不仅仅会造成人类的既有工作被取代,同时也会制造出足够多的新的就业机会。

大多数情况下,工作不是消失了,而是转变为了新的形式。

马车出行意味着一个完整的产业链条,有一连串与马车相关的工种,比如马车夫、马匹饲养和驯化者、马车制造商、马车租赁商,根据马车的需要维护道路的工人,乃至专门清理马匹粪便的清洁工。

汽车的大范围普及意味着所有这些陈旧工种面临失业的风险。但只要简单地计算一下就能发现,新兴起的汽车行业拥有比传统马车行业多出数千倍甚至数万倍的产值和工作机会。

其实,人类越发展,就越不担心高新科技对社会、经济结构的冲击。

如果把这里的“失业”定义为工作转变的话,那么答案是“会的”。从短期看,这种转变会带来一定程度的阵痛,我们也许很难避免某些行业、某些地区出现局部的失业现象。特别是在一个适应人工智能时代的社会保障和教育体系建立之前,这一阵痛在所难免。但从长远来看,这种工作转变绝不是一种以大规模失业为标志的灾难性事件,而是人类社会结构、经济秩序的重新调整,在调整基础上,人类工作会大量转变为新的工作类型,从而为生产力的进一步解放,人类生活的进一步提升,打下更好的基础。

要消除恐惧,我们需要在两个方面努力:

  • 其一,是消除人们心中情绪化、非理性的恐慌心理;
  • 其二,则是理性解决问题。

当前有两项重大的任务等着我们去解决:

  • 其一,是思考如何调配未来20年大量被AI技术替代的工作者;
  • 其二,是我们的教育亟待改革。我们需要对我们的后代进行再教育,分析哪些工作不会轻易被替代,而不仅仅去幻想从事目前看似光鲜亮丽的工作。

机器带给人类的不是失业,而是更大的自由与更加个性化的人生体验。

哪种工作最容易被AI取代?

李开复的“五秒钟准则”一项本来由人从事的工作,如果人可以在5秒钟以内对工作中需要思考和决策的问题做出相应的决定,那么,这项工作就有非常大的可能被人工智能技术全部或部分取代。

如果你的工作涉及缜密的思考、周全的推理或复杂的决策,每个具体判断并非人脑可以在5秒钟的时间内完成,那么,以目前的技术来说,你的工作是很难被机器取代的。

当然,这里说的“五秒钟准则”只是个经验法则,我们可以举出许多并不符合这一准则的个例。

基于“五秒钟准则”,我个人预测,从事翻译、新闻报道、助理、保安、销售、客服、交易、会计、司机、家政等工作的人,未来10年将有约90%被人工智能全部或部分取代。如果就全人类的工作进行一个粗略的估计,我的预测是,约50%的人类工作会受到人工智能的影响。

大部分工作将发生转变而非消失

技术让银行变得更加高效,更易扩展。银行可以开更多的支行,雇用更多的员工,在新的领域投资并制造新的工作机会。

ATM的普及不仅没有造成银行柜员人数的下降,反而给银行提供了拓展业务的契机,银行柜员的工作转变为新的形式后,银行对于柜员的需求也持续增加。

在杰瑞·卡普兰看来,人工智能可能取代的工作大多拥有清晰的评估标准,工作业绩可以被客观地衡量。人工智能无法取代的工作通常需要人类做出决策。例如,风险投资人仍然需要面对面地和创业者会谈,以确定投资意向

与杰瑞·卡普兰的观点相似,我认为在人工智能时代里,人类工作的转型在所难免,但这更多意味着新的工作方式,而非大量的失业。

失业问题未必会如某些人想象的那样严重。技术发展将造成一部分简单工作、底层工作的消失或转变,但由此也会催生更多新型的、更需要人类判断力和创造力的工作类型。

AI只是人类的工具

担心人工智能控制甚至毁灭人类的,是对超人工智能过于乐观的“科幻”爱好者;担心人工智能取代绝大部分人类工作,造成全球大范围失业的,则是不相信科技进步能凭借自身力量优化社会资源分配、调整经济结构、构建新就业秩序的保守主义者。

最有可能变成现实的情形是全人类步入一个崭新的人机协作时代,在这个时代,以人工智能为驱动的机器将大幅提高人类的工作效率,但无论从哪个角度说,机器都只是人类的工具。

AI只是人类的工具。技术本身不是问题,问题是我们如何使用技术以及如何围绕人工智能这样一种革命性的新科技,建立与之配合的社会和经济结构,用制度来保证人人都可享用人工智能带来的巨大收益,同时不必担心失业等潜在风险。

自动驾驶:AI最大的应用场景

自从谷歌正式对外宣布自动驾驶汽车项目以来,自动驾驶行业已呈现出整体布局、多元配置、多角度切入的格局,5到10年后可具备千亿美元乃至万亿美元规模的庞大产业生态已具雏形。

因为智能调度算法的帮助,共享汽车的使用率会接近100%,城市里需要的汽车总量则会大幅减少。

停车难、大堵车等现象会因为自动驾驶共享汽车的出现而得到真正解决。

道路上,汽车和汽车之间可以通过“车联网”连接起来,完成许多有人驾驶不可能完成的工作。

未来的道路也会按照自动驾驶汽车的要求来重新设计,专用于自动驾驶的车道可以变得更窄,交通信号可以更容易被自动驾驶汽车识别。

自动驾驶的普及对产业结构、经济格局的影响将极其深远。想象一下,在过去的100多年,汽车工业是如何彻底改变了全球、全人类的生活方式,如何创造出了一大批市值百亿美元、千亿美元的大型跨国公司,如何带动了从设计、生产到零件、外包、服务、咨询、培训、交通、物流等数百个相关的生态产业,如何在短短数十年里让美国成为“车轮上的国家”,又如何在短短十几年时间里在中国小康家庭中普及了汽车出行的现代生活方式。

自动驾驶技术发展简史

1912年,人类发明的第一架固定翼飞机首飞不到10年,为飞机制造导航仪表的Sperry公司就研制出了第一套自动驾驶系统

自动驾驶装置必备的几个组成部分。
·感知单元:主要由各种传感器和智能感知算法组成,用于感知交通工具行经路线上的实时环境情况。
·决策单元:主要由控制机械、控制电路或计算机软硬件系统组成,用于根据环境信息决定对交通工具施加何种操作。
·控制单元:主要通过交通工具的控制接口,直接或间接操控交通工具的可操纵界面(如飞机的操纵面或汽车的方向盘、踏板等),完成实际的驾驶工作。
这里写图片描述
图37 自动驾驶系统的基本概念模型
1947年,美国空军用一架道格拉斯C-54运输机完成了一次横跨大西洋的飞行,飞机全程使用自动驾驶系统控制,包括起飞和降落环节,这是自动驾驶系统在航空工业中走向普及的标志性事件。

为汽车设计生产廉价、精准、可靠的传感器,是未来自动驾驶行业的重心之一。

完全不需要飞行员的无人机只在军事领域得到了广泛应用,进入大规模商业客运、货运飞行还为时尚早。

对道路的改造(如新的易于识别的交通标志、与汽车传感器配合的信号源等)也许是简化汽车自动驾驶系统实现难度的一条捷径。

在障碍检测方面,Stanley自动驾驶汽车已经使用了机器学习技术。

谷歌认为,要保证自动驾驶的绝对安全,就一定不能依赖于人的参与,必须让自动驾驶汽车的人工智能技术能够应对所有(至少是极其接近100%的)极端路况,否则,就无法销售尚有风险的汽车产品。

因为对100%自动驾驶的高标准追求,谷歌的自动驾驶汽车研发和商业化之路无法在短期内获得收益。

追求最佳的安全和行驶体验,迟迟不进行商业化的开发,这让谷歌自动驾驶团队在许多新闻评论中成了“起个大早,赶个晚集”的揶揄对象。因为产品商业化迟缓,谷歌自动驾驶团队的许多技术人员都已离开谷歌,成为各大科技企业和初创团队中研发自动驾驶技术的领军人物。

2016年12月,谷歌宣布,自动驾驶团队正式分离出来,成立了一家名叫Waymo的新公司。这一举措也许意味着谷歌自动驾驶汽车正式走向商业化的开始,也许是谷歌为了应对人才流失和市场竞争的无奈之举。

自动驾驶的六个级别

许多汽车厂商都把计算机辅助驾驶称为“自动驾驶”

为了更好地区分不同层级的自动驾驶技术,国际汽车工程师学会(SAE International)于2014年发布了自动驾驶的六级分类体系
这里写图片描述
在SAE定义的第3级技术标准中,监控路况的任务由自动驾驶系统来完成。这个差别是巨大的。技术人员也通常将第2级和第3级之间的分界线,视作“辅助驾驶”和“自动驾驶”的区别所在。

这次志愿者测试项目让谷歌自动驾驶团队明白了一点:一旦自动驾驶汽车达到了足够高的水平,车内乘客就会想当然地将所有操控权交给汽车。无论这时候自动驾驶汽车的软件是否还有风险,无论路面上那些极端的路况是不是能被自动驾驶汽车正确处理,车主都不会保持100%的高度警觉。

也就是说,第3级的自动驾驶,目前还很难被不受限制地应用于所有场景。

从商业化的视角来看,第2级或第3级的自动驾驶技术,将来只会被用于有限的场合,而直接面向第4级甚至第5级的自动驾驶,才是未来最大的商业机会。

自动驾驶的普及:中国有机会扮演关键角色

技术方面,谷歌(Waymo)的自动驾驶系统非常成熟,已经接近商用,也许只要一两年的时间,就可以达到SAE第4级和第5级的标准。但在非技术领域,政府、公众、企业还必须考虑诸多政策的、法律的、经济的、心理的甚至是道德层面的问题。

首先,现有的法律制度、政策、保险体系等,并不是为自动驾驶时代的交通量身定制的,一定存在诸多不合理之处。对于法律体系的改进和完善,一定不要以今天的眼光去预测未来的科技。

其次,道德问题始终是制约自动驾驶商业化和大规模普及的关键因素。美国人比较喜欢用一个处于两难境地的道德测试来衡量自动驾驶的合理与否,这个测试叫作“有轨电车难题”(Trolley problem)。

另一个困扰自动驾驶技术商业化的因素是失业问题对传统行业的冲击。而这种冲击,也因不同地方、不同人群而存在巨大差别。

欧盟对自动驾驶技术的要求是,不能用迭代、不断改进的心态去开发自动驾驶软件,而是要第一个商用版本就做到足够安全。

首先,中国是一个快速发展的国家,在全国和城市的交通路网建设上,一直处于不断建设、不断更新的状态。中国比其他任何一个国家都容易从道路建设的角度入手,为自动驾驶汽车配备专用的路面、交通标志甚至制定有针对性的交通法规。这可以弥补自动驾驶技术本身的许多缺陷,将自动驾驶技术发生事故的风险大幅降低。

其次,中国在尝试新科技方面的阻力没有美国那么大,中国政府集中力量支持技术突破的能力也远比美国政府要强。
技术迭代就可以更快速地完成,在中国做自动驾驶相关的科研,就会比在美国或欧洲更容易拿到好的数据、找到好的测试场景,这对自动驾驶在未来的进一步发展十分重要。

再次,中国在评估自动驾驶系统带来的伦理道德问题时,通常会比美国政府、公众的态度更为务实。

自动驾驶技术可以非常容易地将家庭用车模式转变为共享用车的模式。自动驾驶汽车随叫随到,每个家庭不需要长期保有自己的车辆,也不需要购置停车场地。通过基于自动驾驶的分享经济,中国可以大幅减少汽车的保有量,从根本上解决交通堵塞和汽车尾气污染等问题。

自动驾驶将是中国未来10年科技发展面临的最重要的机遇之一。中国有全球最大的交通路网、最大的人口基数,自动驾驶的大规模商业化和技术普及反过来会促进自动驾驶相关科研的飞跃式发展。这种从科研到应用,从应用再反馈到科研的良性循环,正是中国能否在未来10年内,建立起世界先进水平的人工智能科技体系的关键。

智慧金融:AI目前最被看好的落地领域

雇用大量交易员在集中场所进行资产交易的方式,正在从我们这个地球上消失。

人类交易员大量被机器算法所取代,这只是人工智能正在智慧金融建设中发挥重要作用的冰山一角。事实上,包括银行、保险、证券等在内的整个金融行业,都已经并正在发生着用人工智能改进现有流程,提高业务效率,大幅增加收入或降低成本的巨大变革。2017年,据彭博社报道,摩根大通开发了一款金融合同解析软件COIN,已经上线半年多。经测试,原先律师和贷款人员每年累计需要36万小时才能完成的工作,COIN只需几秒就能完成。而且,COIN不仅在“工作”时错误率低,还不用放假。

判断人工智能技术能在哪个行业最先引起革命性的变革,除了要看这个行业对自动化、智能化的内在需求外,主要还要看这个行业内的数据积累、数据流转、数据存储和数据更新是不是达到了深度学习算法对大数据的要求。

而基于深度学习的人工智能算法显然可以在数据分析与数据预测的准确度上,超出人类分析员好几个数量级。

根据高盛公司的评估,金融行业里,最有可能应用人工智能技术的领域主要包括

  • 量化交易与智能投顾
  • 风险防控
  • 安防与客户身份认证
  • 智能客服
  • 精准营销

这里写图片描述
图46 银行业中,人工智能相关应用场景一览

金融行业AI应用成功案例

第一个以人工智能驱动的基金Rebellion曾成功预测了2008年股市崩盘,并在2009年给希腊债券F评级,而当时惠誉的评级仍然为A,通过人工智能,Rebellion比官方降级提前一个月;掌管900亿美元的对冲基金Cerebellum,使用了人工智能技术,从2009年以来一直处于盈利状态。

在国内,蚂蚁金服已成功将人工智能运用于互联网小贷、保险、征信、资产配置、客户服务等领域;智融金服利用人工智能风控系统已经实现月均120万笔以上的放款,常规机器审核速度用时仅8秒;招商银行的可视化柜台、交通银行推出的人工智能机器人“娇娇”等则在智能客服领域做出了早期的尝试和探索。

用钱宝之所以能在保证风险可控的情况下高速增长,最关键的秘密只有一个——用机器学习技术自动分析包含大量强特征和弱特征的数据,自动判断交易风险。

如果把一个人的数据比作一座冰山,那么强特征数据仅是冰山的一角,之下还存在海量的弱特征数据,例如电商数据、设备数据、位置数据、行为数据等。同时,作为百业之母的金融行业与整个社会存在巨大的交织网络,本身沉淀了大量有用或者无用数据,其中包括各类金融交易、客户信息、市场分析、风险控制、投资顾问等。这些数据单位都是海量级,且大量数据又以非结构化的方式存在,无法转换成传统模型可有效分析的数据。

以深度学习为代表的人工智能算法所要做的,就是充分挖掘并有效地利用这些海量弱特征数据,建立起更加符合真实世界规律的数学模型。

未来的金融科技必将是互联网与AI的有机结合,由此产生的智慧金融服务将成为每个人生活的重要组成部分。

AI科学家的土豪人生

成功的机器翻译系统比如谷歌翻译走的都是统计模型的道路(今天更是在统计模型的基础上增加了深度学习这个高级武器)。

别人的人生到达顶峰,鲍勃和彼得的人生才刚开始。他们的人生目标不是赚一个亿,而是赚十个亿,一百个亿,甚至更多——而且,是运用计算机科学的方法,借助计算机科学家特有的敏锐头脑和人工智能知识。

据说,詹姆斯·西蒙斯招人的条件颇为严格,一定要找最聪明的数学家或计算机科学家,坚决不找学金融的、学工商管理的。文艺复兴科技的公司内部,基本上就是一个极客乐园,一点儿也没有华尔街那些世俗金融企业的影子。1993年,鲍勃·默瑟和彼得·布朗这两个在人工智能领域已经颇有名气的研究员被詹姆斯·西蒙斯招至麾下,开始和文艺复兴科技里的数学家、计算机科学家一道,用人工智能技术投资理财,走上了光芒万丈的财富之路。

从大学校园和IBM研究中心走出来的计算机科学家领导一家基金公司,这件事在华尔街并不算新鲜,但在不熟悉金融圈、投资圈的码农们看来,确实有些不可思议。科学家和财富之间,什么样的关系才最和谐?

智慧生活:从机器翻译到智能超市

与机器视觉、语音识别取得的突破相比,人工智能对人类语言的理解目前还处在相对滞后的阶段。基于深度学习的人工智能算法已经可以十分准确地完成“听写”或“看图识字”的操作,但对听到的、看到的文字的意思,机器还是比较难以准确掌握。

未来5到10年里,在自然语言理解方面,也许最可能取得重大突破的就是机器翻译。

C-3PO机器人预示的未来,真的离我们很远吗?一旦机器翻译技术在不断积累的基础上突破了人类可接受的心理阈值,达到了人类翻译的水准,那时,我们有何必要花费生命中大约五分之一的时间去学习和精通一两门甚至更多门的外语?我们有何必要雇用如此多的翻译职员?出门旅行,出国参与商务或学术活动的时候,带上一部安装了机器翻译程序的手机,不就可以与外国人顺利沟通了吗?

今天的微软小冰、苹果Siri等对话机器人,还远远不能达到“聪明”的程度,因为它们无法深入理解人类语言的含义。

亚马逊Echo音箱只是亚马逊的智能会话系统与用户交流的一个终端。实际上,用户对Echo说的话,都会被上传到亚马逊的Alexa服务进行解析。这样一来,亚马逊的Alexa服务就有能力收集到越来越多的真实用户交互样本。基于这种方式,亚马逊很快就可以建立起非常庞大的用户交互行为数据集,在这个数据集的基础上,用机器学习算法不断迭代,取得重大的技术突破只是时间问题。

亚马逊在人工智能方面的许多尝试都让人眼前一亮。2016年年底,亚马逊宣布了一个几乎震惊整个科技界的大新闻:亚马逊开办了一家不用排队、不用结账、拿了东西就可以走人的小超市,名字叫亚马逊Go!

这是一家利用人工智能技术管理的小超市。

从机器翻译到智能家电,再到智能超市,人工智能技术给我们生活带来的巨大变化才刚刚开始。

其实,如果回到10年以前,2007年苹果才刚刚发布第一代iPhone手机,那时谁会想到只用了10年的时间,智能手机就无处不在了呢?

智慧医疗:AI将成为医生的好帮手

今天,在制药领域,以深度学习为代表的人工智能技术可以发挥比六七十年代时大得多的作用。一家总部位于伦敦的名叫Benevolent AI的创业公司,就在做一个有趣的尝试:他们让人工智能系统阅读存储在专利数据库、医疗数据库、化学数据库中的专利、数据、技术资料,以及发表在医药学期刊上的论文,通过机器学习来寻找潜在的可用于制造新药的分子式或配方。

大数据和基于大数据的人工智能,为医生辅助诊断疾病提供了最好的支持。

2017年2月,发表在《自然》杂志上的一篇论文介绍了一次有关皮肤癌诊断的人与机器的“较量”。在该论文所揭示的研究中,科学家们让一个卷积神经网络分析了将近13万张临床上的皮肤癌图片,这个数字比现在最大的研究用图片集高出了两个数量级。在大量学习资料的支持下,这个神经网络迅速成为一名皮肤癌方面的专家。

研究者让这个计算机皮肤癌专家与21名资深的皮肤科医生“同场竞技”。

用AI来辅助疾病诊断,并不是要在所有领域都超越顶尖医生。其实,AI可以给经验不足的医生提供帮助,减少因为经验欠缺而造成的误诊。或者,AI可以帮助医生提高判读医疗影像、病理化验结果的效率,让高明的医生可以在相同时间内给更多的病人提供服务。

在AI的帮助下,我们看到的不会是医生失业,而是同样数量的医生可以服务几倍、数十倍甚至更多的人群。

机器学习算法竞赛平台Kaggle于2017年3月被谷歌收购,成为谷歌云服务平台的一部分,这从另一方面展示了数据与算法竞赛对于人工智能科研的重要性。

艺术创作:AI与人类各擅胜场

目前的人工智能更擅长从大量数据中发现规律,帮助人类完成那些人类只需要简单思考就能做出决策的重复性工作。而人类相比人工智能的一个优势是人类有情感、明善恶、懂美丑,更擅长从事对创造性要求很高的文艺类工作。但这只是从普遍规律的角度来区分机器与人的最大不同。

人工智能算法会画画,能作曲,懂书法,能填词赋诗,还会写春联,这在普通人看来,是非常了不起的成就。这是不是意味着,人工智能和人一样有意识、有创造力、有情感、有思想了呢?

人类将如何变革?

走出金字塔模型

从刀耕火种时代至今,人类历史上的协作分工,基本都遵循一个类似金字塔形状的社会结构模型:少数人影响、领导和指挥较多的人,较多的人再进一步影响或管理更多的人,逐级向下,金字塔底层是大量从事简单、重复性劳动的人。

金字塔结构不一定坍塌,更多的可能是在现有基础上进行自我调整。因为人工智能虽将引起社会工作结构的大规模调整,但调整的结果不等于大量从事简单工作的人必须去勉为其难地完成高层次的分析、决策、艺术等创造性的工作。即便是处在金字塔中层或顶层的人,也将面临人工智能技术的冲击,他们也需要重新适应。

在谷歌,大多数技术管理者同时也是软件开发者,不但做分析、决策,也实际动手写代码,而许多实际写代码的工程师也会花时间参与项目中的关键技术决策。与微软对人才的要求不同,谷歌公司总是强调,不同岗位、不同层级的人都需要是最优秀的精英人才,这样,谷歌在需要做任何技术或商业转型时,都很容易重新安排工作的分配方式,因为优秀的人才总能快速学会另一项技能,或快速适应新的岗位。这一体系,相信在人工智能时代受到的冲击会很小。

不难预测,随着人工智能技术的普及,类似谷歌公司这样,可以灵活配置资源、灵活转换方向的管理体系会越来越受到公司领导者的青睐。

·在人工智能时代,我们需要教育父母,让他们不要再期望孩子寻找“安稳”的工作,因为在传统意义上,“安稳”意味着简单、重复,“安稳”的工作早晚都会被机器取代。我们要帮助下一代做最智慧的选择,选择那些相对不容易被淘汰,或者可以与机器协同完成任务的工作。

用开放的心态迎接新世界

李飞飞提出,人类未来的一个重要目标,是增强人工智能研究者的多样性。这是基于三个层面的考虑:“第一个理由关乎经济和劳动力,人工智能是一个日益增长的技术,会影响到每个人,我们需要更多人力开发出更好的技术;第二个理由关乎创造力和创新,很多研究都显示出,当拥有多种多样背景的人共同合作时,会产生更好的结果和更具有创意的解决方案;最后一个理由关乎社会正义和道德价值,当各种各样背景的人聚集到一起时,他们有着各种各样不同的价值观,代表着人类的技术也会有更加多样性的思考。”

李飞飞敏锐地从另一个角度看到了人工智能未来发展的一种可能:当拥有多样化背景、多种价值观、对未来有不同诉求的人一起参与人工智能的研发与普及时,我们最容易得到一个趋近完美的平衡点,找到人工智能与人类协同工作、生活、生存的多样化解决方案,避免被偏见所左右。这也许是我们目前能想到的,避免潜在危机,防范风险的最好方案。

只有人的精神个性,才是人工智能时代里人类的真正价值。只有用开放的心态,创造性地迎接人工智能与人类协同工作的新世界,才能真正成为未来的主人。

第五章 机遇来临:AI先行的创新与创业

大多数情况下,人工智能并不是一种全新的业务流程或全新的商业模式,而是对现有业务流程、商业模式的根本性改造。AI重在提升效率,而非发明新流程、新业务。未来10年,不仅仅是高科技领域,任何一个企业,如果不尽早为自己的业务流程引入“AI+”的先进思维方式,就很容易处于落后的追随者地位。

大时代,大格局

人工智能来了,普通公众看到的是智能应用的惊艳,科技公司看到的是大势所趋的必然,传统行业看到的是产业升级的潜力,国家层面看到的是技术革命的未来。

今天,“互联网+”的理念已经向各行业、各应用的纵深不断渗透、落地,逐渐积累起来的高质量大数据为许多前沿行业打下了全面运用人工智能的基础。我们有理由说,“AI+”或“+AI”的模式已经步入蓬勃发展的大好时机。

AI将成为国家科技战略的核心方向

其实,对人工智能大趋势、大格局的重视已经开始从社会层面上升到国家层面。2016年5月,国家发改委、科技部、工业和信息化部、中央网信办就联合制定了《“互联网+”人工智能三年行动实施方案》。2017年3月,第十二届全国人民代表大会第五次会议所做的政府工作报告更是明确提出,国家将加快人工智能等新兴产业的技术研发和转化。
斯坦福大学这份报告首先列举了当前的人工智能热门研究领域,包括大规模机器学习、深度学习、强化学习、机器人、计算机视觉、自然语言处理、协同系统、众包和人类计算、算法博弈理论与计算机社会选择、物联网(IOT)、神经形态计算等。

高盛认为,人工智能在四个方面的影响力最为显著:

  • 生产率
  • 尖端技术
  • 竞争优势
  • 创办新公司

人工智能的大部分价值都掌握在具有资源、数据和投资能力的大公司手中

考虑到人工智能已经进入一个最为重要的发展时期,美国政府需要为科研、产业、教育等领域的相关发展提供一个战略方向上的指导。为此,《国家人工智能研究与发展策略规划》提出了七个重点战略方向:

  • 策略1:对人工智能研发进行长期投资。
  • 策略2:开发有效的“人—人工智能”协作方式。
  • 策略3:理解并应对人工智能带来的伦理、法律和社会影响。
  • 策略4:确保人工智能系统的安全。
  • 策略5:开发人工智能共享公共数据集和测试环境平台。
  • 策略6:建立标准和基准评估人工智能技术。
  • 策略7:更好地了解国家对人工智能研发人才的需求。

《人工智能时代》的作者杰瑞·卡普兰就完全不相信美国政府发布的所谓战略规划能有多大的约束力。

杰瑞·卡普兰认为,当我们看到美国政府的类似计划时,我们必须持一种怀疑的态度。美国所谓的政策,很多时候不过是一群拥有美好愿望的人召开了一次政府会议,并发布了一些相关文件。

从谷歌的“AI先行”看科技企业的AI战略

谷歌之所以为谷歌,最重要的是,无论在哪一次重大的技术变革中,谷歌几乎都能敏锐地捕捉到先机,早早建立起领先竞争对手一两年乃至三五年的巨大技术优势。

谷歌大脑的意义,绝不仅仅是打造了一个可以进行深度学习计算的高性能平台这么简单。实际上,随着谷歌大脑成为谷歌内部越来越多技术项目的基石,谷歌也自然而然地喊出了“AI先行”(AI First)的战略口号。

所有这些围绕人工智能技术建立的战略方向,让整个Alphabet集团变成了世界上最大的AI平台!

深度学习天生青睐于显卡中图形处理器(GPU)的强大计算能力,英伟达公司在AI时代一跃成为比英特尔CPU还要抢眼的核心驱动力。

2016年11月,Facebook宣布,贾扬清的技术团队基于Caffe开发了一个基于移动设备的深度学习框架Caffe2go,首次在运算能力受限的手机上实现了实时的图像与视频捕获,以及后续基于深度学习的分析、处理。贾扬清说:“随着我们的不断进步,你可以想象,可以在(移动)设备上运行的实时AI技术将能帮助这个世界变得更加开放,让人与人之间的联系得以加强,特别是在无障碍应用和教育等领域。可以拿在手上的智能设备将会持续地改变我们对智能的定义。”

科技“巨头”的潜在威胁

AI时代,数据为王

谷歌等行业巨头坐享地球上最为丰富的大数据资源,利用这些庞大数据资源帮助人类克服挑战、解决问题当然最为理想,但谁又能从法律、道德等层面保证,对这些大数据资源的垄断不会成为行业巨头谋求一己私利的壁垒与工具?

大企业在AI领域拥有几个巨大的优势:
懂得如何创建AI系统的人数非常有限。大企业可以为他们支付比创业公司更多的薪酬,就像雇用体育明星。大企业差不多可以把他们都收入麾下,留给其他企业的人才将少之又少。

AI项目通常都非常大、非常复杂。

亚马逊的Echo智能音箱是大约1500名工程师开发4年才完成的(注:马克·安德森这里说的工程师人数应该是有些夸大了,亚马逊CEO杰夫·贝索斯2016年5月在另一个场合的说法是:经过4年发展,Echo团队目前已有超过1000名员工)。

需要巨大数量的数据集来创建AI应用。

谷歌和Facebook之类的大型企业可以访问浩如烟海的数据资源,而创业公司则只能望洋兴叹。

2016年9月,谷歌(包括Deep Mind)、亚马逊、Facebook、IBM和微软等甚至结成了AI联盟(Partnership of Artificial Intelligence)

巨头联盟只会加剧资源的进一步集中甚至是封闭。

举个例子,假如Facebook借助庞大的社交网络资源,希望通过智能算法主动引导信息流动,并进而影响美国总统大选时的选民倾向,这在技术上几乎是完全可行的。我们当然知道,目前的谷歌、Facebook等巨头对人类的实际贡献远多于它们“作恶”的可能性,但从法律、道德角度,我们又必须想办法防范这一潜在风险。因为再友善的巨头本质上也是商业公司,巨大的商业利益永远是诱惑它们“作恶”的诱饵。

谷歌开源的Tensor Flow框架,已经成为业界深度学习的标准框架之一。谷歌在过去的几年时间里,连续开源You Tube 8M、Open Images、Audio Set等包含数百万份视频、图片、音频的标注数据集,为人工智能领域的科研发展提供“原材料”。

巨头建立的AI平台以及巨头之间的结盟关系,有可能让数字鸿沟变得越来越严重。

对于这样的“巨头风险”,我觉得我们应该从法律和制度建设层面,多做些有前瞻性的事情,包括:
·提高大数据和人工智能应用领域的透明度,鼓励公开那些不涉及用户隐私和商业机密的研发成果,鼓励开源。
·更多地鼓励利用区块链技术管理数据和信息流动,从技术和制度双方面打破科技巨头对大数据的垄断。
·成立有社会责任感的VC基金,专注于新兴的大数据和人工智能方向。
·多关注能够帮助落后人群获取信息、享受AI福利的平台。
·鼓励大众和媒体去监督行业巨头的商业行为。

对于较小企业,进入AI市场的难度的确比移动互联网时代的创业高出非常多。

巨头垄断大数据资源、垄断科研与舆论的风险客观存在。而在国家政策层面、法律法规层面甚至道德层面,我们还缺乏应对这种潜在风险的有效体系。

AI创业是时代的最强音

伟大的创业需要生逢其时

创业大潮里,有的创业者脱颖而出,有的创业者负重前行。我们虽不以成败论英雄,但如果一定要找一条诞生伟大公司的必要条件,我会选择“生逢其时”。

雷军创立小米的传奇让“风口论”深入人心——只要站在风口,猪也能飞起来。有人说,这是绝对的机会主义。但在创业的时代大潮中,是否符合科技大趋势的确是决定创业成败的第一要素。

未来四五年对于人工智能时代的意义,和20世纪70年代、80年代对于PC时代的意义相比,绝对毫不逊色。几乎可以预言,如果人工智能时代也会出现苹果、微软、谷歌、百度、阿里、腾讯等伟大公司的话,那么,这些伟大公司一定会有相当数量是在这四五年里创立的。

加拿大是人工智能创业的“科研型孵化器”。深度学习三巨头中,杰弗里·辛顿和约书亚·本吉奥都在加拿大的大学教书,这直接促成了加拿大极为出色的人工智能研究氛围。

根据《乌镇指数:全球人工智能发展报告2016》的统计:人工智能领域,美国与欧洲投资较为密集,数量较多,其次为中国、印度、以色列。美国共获得3450多笔投资,位列全球第一;英国获得274笔投资,位列第二;中国则以146笔投资位列第三。美国人工智能企业总数为2905家,全球第一。仅加州的旧金山/湾区、大洛杉矶地区两地的企业数量即达到1155家,占全球的19.13%。

AI时代,最大“风口”就是人工智能本身。肯定不是所有猪都能在风口飞起来,但要做一飞冲天的创业英雄,就一定要看准科技大势,选择最正确的时机做最正确的事。

人工智能的商业化路线图

本质上,过去20年的互联网和移动互联网是一个不断将线上、线下的业务场景紧密连接,同时也不断促使数据产生、流转、集中和再利用的过程。

从投资人的角度看,AI兴起的最大契机还不是深度学习技术的发明,而是过去20年互联网、移动互联网的高速发展对自动化的强烈需求。

创新工场管理合伙人、资深投资人汪华认为,人工智能的商业化大致可分为三个主要阶段:

  • 第一阶段,AI会率先在那些在线化程度高的行业开始应用,在数据端、媒体端实现自动化。
  • 第二阶段,随着感知技术、传感器和机器人技术的发展,AI会延伸到实体世界,并率先在专业领域、行业应用、生产力端实现线下业务的自动化。
  • 第三阶段,当成本技术进一步成熟时,AI会延伸到个人场景,全面自动化的时代终将到来。

根据汪华的判断,我们目前正在进入AI商业化的第一个阶段,也许只需要3年左右的时间,AI就可以在各种在线业务中得到普及。AI商业化的第二个阶段,要花五六年、六七年的时间才能充分发展起来。而标志着全面自动化的第三阶段,也许需要十几年或更长的时间。

AI创业的五大基石

这里写图片描述
图58 人工智能创业的五大基石

  • 清晰的领域界限
  • 闭环的、自动标注的数据
  • 千万级的数据量
  • 超大规模的计算能力
  • 顶尖的AI科学家

AI创业的泡沫现象及六大挑战

在智能医疗领域,今后可以成功的初创公司,一定是那些既懂人工智能算法,又特别了解医疗行业,可以收集到高质量医疗数据的公司。

概括来说,目前的人工智能产业发展面临六大挑战:

  • 一、前沿科研与产业实践尚未紧密衔接
  • 二、人才缺口巨大,人才结构失衡
    • 据Linked In统计,全球目前拥有约25万名人工智能专业人才,其中美国约占三分之一
      人才供需矛盾显著,高级算法工程师、研究员和科学家的身价持续走高。人才结构方面,高端人才、中坚力量和基础人才间的数量比例远未达到最优。
  • 三、数据孤岛化和碎片化问题明显
  • 四、可复用和标准化的技术框架、平台、工具、服务尚未成熟
    • 一个完整人工智能生态所必备的,从芯片、总线、平台、架构到框架、应用模型、测评工具、可视化工具、云服务的模块化与标准化工作,尚需3年或更长时间才能真正成熟。
  • 五、一些领域存在超前发展、盲目投资等问题
  • 六、创业难度相对较高,早期创业团队需要更多支持
    对高级人才较为依赖,科学家创业者自身的商业实践经验较少,高质量大数据较难获得,深度学习计算单元和计算集群的价格十分昂贵,等等。

AI是中国创新、创业的最好机会

总体来说,目前的人工智能大格局中,机遇是主旋律,泡沫和危机是必须克服的局部挑战。这一格局在全球如此,在中国亦如此。

人工智能时代,中国的人才优势、市场优势、资金优势、坚持多年创新的商业模式优势等,都是人工智能最好的生长土壤。

AI领域,中国人/华人已是科研中坚

根据创新工场的统计,在2006年到2016年的时间段里,近两万篇顶级的人工智能文章中,由华人贡献的文章数和被引用数,分别占全部数字的29.2%和31.8%。

但从突破性科研贡献的数量和质量上说,中国还无法与美国相比。

中国有独具优势的AI创业环境

中国学生普遍理工科较强,数学较强。这在人工智能时代里,显然有巨大的优势。

同时,即便是没有专门去学计算机科学的学生,他们中有很多已经具备了非常扎实的数学知识,这些学生在需要时可以通过培训,较快地成为掌握深度学习等人工智能技术的算法工程师。

行业需求方面,中国的传统行业较为薄弱,但这种状况反而给中国带来了一种后发优势。

尽管美国人工智能企业领先全球,但它们要想进入中国市场必须跨越重重阻碍,因为中国市场需要的是最“接地气”的本地化解决方案。此外,对于人工智能的探索性和试用性需求,中国往往会采取相对开放和鼓励的路线,这也可能促进行业的超速发展。

中国虽然在人工智能的前沿研发中不如美国,但中国有独具优势的AI科研和创业环境,有机会实现弯道超车,后发先至。

AI黄埔军校——微软亚洲研究院

1999年加入微软亚洲研究院的张宏江是视频检索领域的“开山鼻祖”。张宏江在微软亚洲研究院期间,就曾带领和指导视觉计算组解决人脸识别的问题。

今天,人脸识别在中国的金融和安防两个垂直领域得到了广泛应用

创新工场的AI布局

这里写图片描述
图64 创新工场在人工智能领域的投资布局
创新工场还宣布成立人工智能工程院。这是一个专门面向人工智能的创业人才培养基地和创业项目孵化实验室,其使命是为人工智能创业提供人才与技术、产品和商业经验、市场推广、软硬件平台、高质量大数据源等多方位的支持。

创新工场人工智能工程院的主要工作任务包括:

  • 对接科研成果与商业实践,帮助海内外顶级人工智能人才创业
  • 培育和孵化高水准的人工智能技术团队
  • 积累和建设人工智能数据集,促进大数据的有序聚合和合理利用
  • 开展广泛合作,促进人工智能产业的可持续发展

发表评论

电子邮件地址不会被公开。 必填项已用*标注